Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Gut and Liver ; : 747-751, 2013.
Article in English | WPRIM | ID: wpr-209549

ABSTRACT

Familial juvenile polyposis (FJP) is a rare autosomal dominant hereditary disorder that is characterized by the development of multiple distinct juvenile polyps in the gastrointestinal tract and an increased risk of cancer. Recently, germline mutations, including mutations in the SMAD4, BMPR1A, PTEN and, possibly, ENG genes, have been found in patients with juvenile polyps. We herein report a family with juvenile polyposis syndrome (JPS) with a novel germline mutation in the SMAD4 gene. A 21-year-old man presented with rectal bleeding and was found to have multiple polyps in his stomach, small bowel, and colon. His mother had a history of gastrectomy for multiple gastric polyps with anemia and a history of colectomy for colon cancer. A review of the histology of the polyps revealed juvenile polyps in both patients. Subsequently, mutation screening in DNA samples from the patients revealed a germline mutation in the SMAD4 gene. The pair had a novel mutation in exon 10 (stop codon at tyrosine 413). To our knowledge, this mutation has not been previously described. Careful family history collection and genetic screening in JPS patients are needed to identify FJP, and regular surveillance is recommended.


Subject(s)
Female , Humans , Male , Middle Aged , Young Adult , Exons , Gastrointestinal Neoplasms/genetics , Germ-Line Mutation , Intestinal Polyposis/congenital , Neoplastic Syndromes, Hereditary/genetics , Smad4 Protein/genetics
2.
Indian J Cancer ; 2011 Jul-Sept; 48(3): 351-360
Article in English | IMSEAR | ID: sea-144494

ABSTRACT

One of the major signaling pathways that determine the tumor aggression and patient outcome in pancreatic cancer is the transforming growth factor-beta (TGF-ß) pathway. It is inactivated at various levels in pancreatic cancer and plays a dual role in tumor initiation and progression. The Smad family of proteins transduce signals from the TGF-ß superfamily ligands that regulate cell proliferation, differentiation and death through activation of receptor serine/threonine kinases. This review discusses the structure, function and regulation of various participating Smad family members, and their individual roles in determining the progression and outcome of pancreatic cancer patients, with a special emphasis on Smad4.


Subject(s)
Cell Differentiation , Cell Proliferation , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Phosphorylation , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Signal Transduction , Smad4 Protein/chemistry , Smad4 Protein/genetics , Smad4 Protein/metabolism , Smad6 Protein/genetics , Smad6 Protein/metabolism , Smad7 Protein/genetics , Smad7 Protein/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
3.
Indian J Cancer ; 2011 Apr-Jun; 48(2): 170-174
Article in English | IMSEAR | ID: sea-144447

ABSTRACT

Background: Smad4, Smad6 and Smad7 are important molecules in TGF-beta pathway, which plays an important role in pancreatic ductal adenocarcinoma (PDAC) biology. Aims : This study examined the expression profiles of Smad4, Smad6 and Smad7 mRNA in patient samples of PDAC and their relationship to Smad protein expression, SMAD4 gene mutations, clinicopathological parameters and patient survival. Settings and Design: Surgically resected, paired normal and tumor tissues of 25 patients of PDAC were studied. Materials and Methods: Protein and mRNA levels were assessed by immunohistochemistry and RT-PCR, respectively. Statistical Methods: Statistical analysis was done using Student's t-test, Pearson's chi-square test, Spearman's Rank Correlation, Pearson's Correlation test and Kaplan-Meier Logrank test. Results: While there was a highly significant difference in the protein levels of all three Smads in tumor as compared to normal samples, mRNA levels were significantly different only for Smad4. Protein levels did not correlate significantly with mRNA levels for any of the three Smads. The mRNA levels of Smad4 and Smad6, Smad4 and Smad7, and Smad6 and Smad7 in tumor samples showed a significant positive correlation. The relationship of Smad4 mRNA expression to SMAD4 gene status and Smad4 protein expression was discordant and there was no significant correlation between mRNA expression and clinicopathological parameters and patient survival. Conclusion : The absence of concordance between SMAD4 gene status, mRNA expression and Smad4 protein expression suggests the presence of other regulatory mechanisms in Smad4 transcription and translation in PDAC.


Subject(s)
Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/secondary , Adult , Aged , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/secondary , Female , Humans , Immunoenzyme Techniques , Male , Middle Aged , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Prognosis , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Smad4 Protein/genetics , Smad4 Protein/metabolism , Smad6 Protein/genetics , Smad6 Protein/metabolism , Smad7 Protein/genetics , Smad7 Protein/metabolism , Survival Rate
4.
Journal of Korean Medical Science ; : 69-76, 2009.
Article in English | WPRIM | ID: wpr-112922

ABSTRACT

Hereditary hemorrhagic telangiectasia (HHT) is an inherited disorder that is characterized by abnormal communication between the arteries and veins in the skin, mucosa, and various organs. HHT has been reported to show significant phenotypic variability and genetic heterogeneity with wide ethnic and geographic variations. Although mutations in the endoglin (ENG) and activin A receptor type II-like 1 (ACVRL1) genes have been known to cause HHT for more than 10 yr, little is known about the clinical features or genetic background of Korean patients with HHT. In addition, mutations in mothers against decapentaplegic homolog 4 (SMAD4) are also seen in patients with the combined syndrome of juvenile polyposis and HHT. This study examined five Korean patients with the typical manifestations of HHT such as frequent epistaxis and pulmonary arteriovenous malformations. Direct sequencing of the ENG and ACVRL1 genes revealed one known mutation, ENG c.277C>T, in one patient and two novel mutations, ENG c.992-1G>C and ACVRL1 c.81dupT in two patients, respectively. The remaining two patients with negative results were screened for SMAD4 mutations as well as gross deletions of ENG and ACVRL1 using multiple ligation-dependent probe amplification, but none was detected. Despite the small number of patients investigated, we firstly report Korean patients with genetically confirmed HHT, and show the genetic and allelic heterogeneity underlying HHT.


Subject(s)
Adult , Female , Humans , Male , Middle Aged , Young Adult , Activin Receptors, Type II/genetics , Alleles , Angiography , Antigens, CD/genetics , Asian People/genetics , Base Sequence , Genetic Predisposition to Disease , Korea , Mutation , Pedigree , Receptors, Cell Surface/genetics , Smad4 Protein/genetics , Telangiectasia, Hereditary Hemorrhagic/diagnosis , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL